## SCRD Water

 Demand nalysis UpdatePresentation to SCRD Board

Review Project History

## Presentation

 Outline
## What is a Water Demand Analysis (WDA) and why do it?

## What is it?

- A water budget to quantify current and future demand and supply
- Determine the gap between them


## Why do it?

- For short and long term planning
- rationale to support capital projects and grant funding applications



## Water Sourcing Policy, 2018

## August 15, 2018

Mayor Milne, District of Sechelt Mayor Rowe, Town of Gibsons Chief Paull, shishálh Nation
Chief Campbell, Skwxwú7mesh Nation
Lori Pratt, Chair, School District 46
Peter Luckham, Chair, Islands Trust
Dear Local Government Partners,


Re: Water Sourcing Policy and Regional Growth Strategy
Recently, the Sunshine Coast Regional District (SCRD) commenced regional policy development for two key initiatives as outlined below. This correspondence and attached reports serve as information and an invitation for future engagement in these important discussions for our community.

1. Water Sourcing Policy

The first initiative is the Water Sourcing Policy. This policy was developed to provide a guiding document outlining how the current and future long term water demand will be met using available sources. The Water Sourcing Policing was adopted at the May 24, 2018
regural sund duara nimeenty, as tuliovvs.

## 172/18 <br> Recommendation No. 1 Water Sourcing Policy - Policy Framework

THAT the report titled Water Sourcing Policy - Policy Framework be received;
AND THAT that the objective of the Water Sourcing Policy - Policy Framework be that the Sunshine Coast Regional District's intent is to supply sufficient water at no further restriction than current Stage 2 levels throughout the year;
AND THAT the Water Sourcing Policy - Policy Framework report as amended be forwarded to member municipalities and First Nations for their comments;

AND THAT a further report and Water Sourcing Policy be brought forward for consideration once all technical studies required for development are completed;

AND FURTHER THAT staff report to a Committee meeting with a review of the water capacity for fire-fighting, emergency situations and for agricultural water uses.

## Community Climate Action Plan, April, 2023

## Adaptation - Drinking Water

The Sunshine Coast is already witnessing how climate change is worsening summer droughts. With seven of the last eight years seeing less summer precipitation than on average what climate models predict for the year 2050, threshold events may already have been crossed where non-linear changes are to be expected.

## Community Climate Action Plan, April, 2023

| Goal 6: Water systems are resilient to increasing temperatures, recurring, and worsening drought |  |
| :--- | :--- |
| Action 11 | Continue to develop understanding and mitigate against the impacts of climate <br> change on water systems. |
| Sub-Actions | Develop understanding of how temperature and precipitation may change in the <br> coming decades. |
|  | Determine impact of temperature, precipitation, and ecosystem loss on supply and <br> demand. |
|  | Support the integration of climate considerations into SCRD's Water Strategy and <br> Town of Gibsons Natural Asset Plan with relation to Aquifer 560 and Aquifer 552. |

The WDA is trying to determine the severity and impact of a drought.

It is not trying to model the likelihood of it occurring.

## Water Demand Analysis (2018)

## Answer these questions:

- How long is the summer drought period
- What is the potable water (demand) at Stage 2 levels?
- How does this grow with population?
- How much water is needed for Chapman Creek EFN?
- How much water supply does the SCRD currently have available?
- The shortfall is called the "Water Supply Deficit"



## Population and Potable Demand

- Population modelled from Census data
- $2 \%$ annual growth rate
- Per capita demand modelled from Chapman water data from 2004 present
- Modelled as a $20 \%$ reduction from 2010 level
- 1.0m3/day/capita in July-Aug in Stage 1
- Stage 2 is modelled as an immediate $20 \%$ decrease
- Not modelling for Stage 3 and 4 as the goal is to stay in Stage 2.



## Drought Period

- Start is defined as the day when Chapman Lake stops overflowing, and Stage 2 is called
- Effectively, the end of snowmelt
- Earliest seen was in 2015, on June 8
- Mutual decision to model this as 1 May
- End of drought is when lakes refill from rain.
- At 2018, this has always happened by midOctober
- End date modelled as 31 October
- 184 days



## EFN

- EFN to be maintained at 200L/s (17,300m3/day)
- EFN must be made up before potable demand can be met
- Applies all year round, but mainly an issue in summer
- EFN deficit cannot be supplied from external groundwater - can only be supplied from storage (or Distric $\dagger$ of Sechelt reclaimed water)



## Water Demand Analysis 2018

| Demand Reduction (conservation) <br> Factor from 2010 | Supply Deficit $\left(\mathbf{m}^{3}\right)$ |  |  |
| :--- | :--- | :--- | :--- |
| Demand Reduction | 2025 | 2035 | 2050 |
| Population | 26,000 | 32,000 | 43,000 |
| 0\% (zero reduction) | $2,454,000$ | $3,392,000$ | $5,114,000$ |
| 10\% (minimal reduction) | $2,002,000$ | $2,837,000$ | $4,366,000$ |
| 20\% (moderate reduction) | $1,640,000$ | $2,391,000$ | $3,770,000$ |
| 33\% (high reduction) | $1,245,000$ | $1,811,000$ | $2,988,000$ |

## Water Demand Analysis 2018

|  | Supply | Deficit $\left(\right.$ Mm³ $^{3}$ |  |
| :--- | :--- | :--- | :--- |
|  | 2025 | 2035 | 2050 |
| Population | 26,000 | 32,000 | 43,000 |
| Lake Storage | 1.7 | 1.7 | 1.7 |
| EFN Requirement | 3.3 | 3.3 | 3.3 |
| Modelled Watershed Contribution | 3.1 | 3.1 | 3.1 |
| Watershed EFN deficit | 0.2 | 0.2 | 0.2 |
| Total EFN Deficit | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| Potable Demand | 3.3 | 4.0 | 5.4 |
| Remaining Lake Storage | 1.5 | 1.5 | 1.5 |
| Groundwater Supply (Chaster) | $\mathbf{0 . 1 8 4}$ | 0.184 | 0.184 |
| Potable Water Deficit | $\mathbf{1 . 6 4}$ | $\mathbf{2 . 3 9}$ | $\mathbf{3 . 7 7}$ |
| Total Water Supply Deficit | $\mathbf{1 . 6 4}$ | $\mathbf{2 . 3 9}$ | $\mathbf{3 . 7 7}$ |

## Drought years 2012-2018

2018 Flow Model for Chapman Creek Watershed Contribution during Six Month Dry Period
Data is plotted as 7 day moving average


## Drought years 2012-2022

2012-2022 Data for Chapman Creek Watershed Contribution during Six Month Dry Period Data is plotted as 7 day moving average


## 28 Day average to smooth the curves...



## "normalize" the curves to a common starting point

Watershed contribution - Normalized to 1 May $=100,000 \mathrm{~m} 3 /$ day (data is 7 day moving average)


## New model curve

Chapman Creek Watershed Contribution during Six Month Dry Period Data is plotted as $\mathbf{2 8}$ day moving average


## Put it back on the 7 day charts

Proposed Flow Model for Chapman Creek Watershed Contribution during Six Month Dry Period Data is plotted as 7 day moving average


## Watershed Contribution

- Is the natural flow in the creek, without any augmentation from lake storage
- Dramatic reduction over successive years from 2012
- Regardless of when the snowmelt ends, the flow drops very quickly, from $100,000 \mathrm{~m} 3 /$ day to less than $10,000 \mathrm{~m} 3 /$ day in the first month
- The steady baseflow level has declined in every drought year since 2012
- In Sep-Oct 2022 the baseflow went negative by $3150 \mathrm{~m} 3 /$ day
- This is from evaporative and infiltration loss in the 17 km Chapman Creek Channel
- For modelling in 2023, have taken the 2022 curve, where drought (Stage 2) started on 28 July, and slide it sideways to start on 1 May
- Extend end of drought to 15 Nov to reflect end of drought in 2022.
- 200 day period


## What has changed from 2018 ?

|  | 2018 | 2023 |
| :--- | :--- | :--- |
| Pop. growth rate | $2 \%$ | $2 \%$ |
| Town of Gibsons Zone 3 | Incl. | Excl. |
| Groundwater Sources | Chaster | Chaster + <br> Church Rd |
| Groundwater Vol (m3/day) | 1000 | 5400 |
| Drought start date | 1 May | 1 May |
| Drought End date | 31 Oct | 15 Nov |
| Drought Duration | $184 d$ | 200 d |
| Lake Storage (Mm3) | 1.64 | 1.77 |
| Lake siphons included? | No | No |

## Comparison of 2018 and 2023 models

| All amounts in million m3 | 2018 model | 2023 model |
| :--- | :--- | :--- |
| Population (2025) | 26,000 | 24,100 |
| Lake Storage | 1.64 | 1.77 |
| EFN Requirement | 3.26 | 3.54 |
| Modelled Watershed Contribution to <br> EFN | 3.05 | 0.38 |
| Watershed EFN Deficit | 0.21 | 3.16 |
| Total EFN Deficit (to come from RWR) | $\mathbf{0}$ | 1.39 |
| Potable Demand | 3.26 | 3.17 |
| Potable Supply from Lakes | 1.43 | 0 |
| Potable Supply from GW | 0.184 | 1.08 |
| Net potable deficit | $\mathbf{1 . 6 4}$ | $\mathbf{2 . 0 9}$ |
| Total Water Supply Deficit | $\mathbf{1 . 6 4}$ | $\mathbf{3 . 5 1}$ |

## Water Demand Analysis 2023

|  | Supply Deficit $\left(\mathbf{M m}^{3}\right)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 2025 | 2035 | 2050 | 2075 |
| Population | 24,100 | 30,000 | 40,000 | 65,000 |
| Lake Storage | 1.77 | 1.77 | 1.77 | 1.77 |
| EFN Requirement | 3.54 | 3.54 | 3.54 | 3.54 |
| Modelled Watershed Contribution | 0.38 | 0.38 | 0.38 | 0.38 |
| Watershed EfN Deficit | 3.16 | 3.16 | 3.16 | $\mathbf{3 . 1 6}$ |
| Total EFN Deficit (to come from RWR) | 1.39 | 1.39 | 1.39 | 1.39 |
| Potable Demand | 3.17 | 3.95 | 5.23 | 8.48 |
| Potable Supply from GW | 1.08 | 1.08 | 1.08 | 1.08 |
| Net Potable Deficit | $\mathbf{0 . 3 5}$ | $\mathbf{1 . 1 3}$ | $\mathbf{2 . 4 1}$ | $\mathbf{5 . 7}$ |
| Total Water Supply Deficit | $\mathbf{3 . 5 1}$ | $\mathbf{4 . 2 9}$ | $\mathbf{5 . 5 7}$ | $\mathbf{8 . 8 6}$ |

## In closing

- The WDA models the demand and supply required to stay in Stage 2 for an extended drought period
- A dramatic decrease in the natural summer creek flow over the last decade
- In a drought, the creek is effectively dry two months after the end of snowmelt
- This drought period is now 200 days, from 1May to 15 Nov
- The watershed EFN deficit is now 3.16 Mm 3 , requiring the entire volume of the alpine lakes plus an additional 1.4 Mm 3 from the RWR

The overall Water Supply Deficit is:
3.5Mm3 for 2025
4.3 Mm 3 for 2035
5.6 mm 3 for 2050

Questions?

## Thank you

